社交网络内容生产中用户“信息茧房”的情感偏向研究A Study of User's “Information Cocoon Room” in Social Network Content Production——An Empirical Analysis Based on Sina Weibo
徐翔,董洁芸
摘要(Abstract):
本文以新浪微博用户(N=2143)为样本,采用BERT模型进行情感分析,考察用户随着信息茧房程度加深而呈现出怎样的共通情感偏向,及其基于情感偏向的情感趋同特征。研究发现:用户信息茧房程度越高,不同的信息茧房之间共通的情感偏向也越趋向增强;在32种情绪中,用惊喜、无奈、安心、想念、羡慕、愉悦、振奋、内疚、骄傲这9种情绪分别所占的比例即可预测用户的信息茧房程度,其调整后R~2达到0.489。在情感偏向基础上,随着用户信息茧房程度加深,用户情感与信息茧房“顶部”用户越来越相似。
关键词(KeyWords): 社交网络用户;信息茧房;情感偏向;情感趋同
基金项目(Foundation): 国家自然科学基金项目“社交网络互动中用户‘信息窄化’机理分析:基于微博的数据挖掘”(项目批准号:71804126)阶段性研究成果
作者(Author): 徐翔,董洁芸
DOI: 10.16602/j.gjms.20220039
参考文献(References):
- 保罗·艾克曼(2008):《情绪的解析》(杨旭译),海口:南海出版公司。(原书 Ekman,P.[2003].Emotions revealed.London:Weidenfeld & Nicolson.)
- 陈安繁、金兼斌、罗晨(2019):奖赏与惩罚:社交媒体中网络用户身份与情感表达的双重结构,《新闻界》,第4期,27-44页。
- 陈华珊、王呈伟(2019):茧房效应与新闻消费行为模式——以腾讯新闻客户端用户评论数据为例,《社会科学》,第11期,73-87页。
- 郭小安、甘馨月(2018):“戳掉你的泡泡”——算法推荐时代“过滤气泡”的形成及消解,《全球传媒学刊》,第5卷第2期,76-90页。
- 凯斯·R.桑斯坦(2003):《网络共和国:网络社会中的民主问题》(黄维明译),上海:上海人民出版社。(原书:Sunstein,C.R.[2001].Republic.com.Princeton:Princeton University Press.)
- 凯斯·R.桑斯坦(2008):《信息乌托邦:众人如何生产知识》(毕竞悦译),北京:法律出版社。(原书 Sunstein,C.R.[2006].Infotopia:how many minds produce knowledge.New York:Oxford University Press.)
- 雷扎·扎法拉尼、穆罕默德·阿里·阿巴西、刘欢(2015):《社会媒体挖掘》(刘挺、秦兵、赵妍妍译),北京:人民邮电出版社。(原书Zafarani,R.,AliAbbasi,M.& Liu,H.[2014].Social media mining:An introduction.NewYork:Cambridge University Press.)
- 刘丛、谢耘耕、万旋傲(2015):微博情绪与微博传播力的关系研究——基于24起公共事件相关微博的实证分析,《新闻与传播研究》,第22卷第9期,92-106页。
- 隋岩、李燕(2012):论群体传播时代个人情绪的社会化传播,《现代传播》,第34卷第12期,10-15页。
- 新浪微博(2021年3月12日):2020微博用户发展报告,获取自https://weibo.com/6067213401/K5P3C2RFZ?layerid=4613864249365413.
- 徐琳宏、林鸿飞、赵晶(2008):情感语料库的构建和分析,《中文信息学报》,第22卷第1期,116-122页。
- 徐翔、靳菁(2021):基于word2vec的信息窄化测度及影响因素研究,《吉林大学学报(信息科学版)》,第39卷第3期,339-347页。
- 杨洸、佘佳玲(2020):新闻算法推荐的信息可见性、用户主动性与信息茧房效应:算法与用户互动的视角,《新闻大学》,第2期,102-118页。
- 张淑芳、杨宁(2019):共同体视域下算法推送机制的信息茧房效应规制,《湖北社会科学》,第10期,171-177页。
- Belkin,L.Y.,Kurtzberg,T.R.& Naquin,C.E.(2006).Emotional contagion in the online environment:Investigating the dynamics and implications of emotional encounters in mixed-motive situations in the electronic context.IACM 19TH Annual Conference,Philadelphia.
- Bessi,A.,Coletto,M.,Davidescu,G.A.,Scala,A.,Caldarelli,G.& Quattrociocchi,W.(2015).Science vs conspiracy:Collective narratives in the age of misinformation.PLoS One,10(2),e0118093.doi:10.1371/journal.pone.0118093.
- Del Vicario,M.,Vivaldo,G.,Bessi,A.,Zollo,F.,Scala,A.,Caldarelli,G.& Quattrociocchi,W.(2016).Echo chambers:Emotional contagion and group polarization on Facebook.Scientific Reports,6,37825.doi:10.1038/srep37825.
- Di Marco,N.,Cinelli,M.& Quattrociocchi,W.(June 16,2021).Infodemics on YouTube:Reliability of content and Echo Chambers on covid-19.Retrieved from https://arxiv.org/abs/2106.08684
- Forgas,J.P.(1998).On being happy and mistaken:Mood effects on the fundamental attribution error.Journal of Personality and Social Psychology,75(2),318-331.doi:10.1037/0022-3514.75.2.318.
- Fredrickson,B.L.(2001).The role of positive emotions in positive psychology:The broaden-and-build theory of positive emotions.American Psychologist,56(3),218-226.doi:10.1037/0003-066x.56.3.218.
- Hansen,L.K.,Arvidsson,A.,Nielsen,F.A.,Colleoni,E.& Etter,M.(2011).Good friends,bad news-affect and virality in Twitter.In 6th International Conference on Future Information Technology (pp.34-43).Crete,Greece:Springer.doi:10.1007/978-3-642-22309-9_5.
- Harmon-Jones,E.,Gable,P.A.& Price,T.F.(2013).Does negative affect always narrow and positive affect always broaden the mind?Considering the influence of motivational intensity on cognitive scope.Current Directions in Psychological Science,22(4),301-307.doi:10.1177/0963721413481353.
- Jatowt,A.,Antoine,é,Kawai,Y.& Akiyama,T.(2015).Mapping temporal horizons:Analysis of collective future and past related attention in twitter.In Proceedings of the 24th International Conference on World Wide Web (pp.484-494).Florence,Italy:International World Wide Web Conferences Steering Committee.doi:10.1145/2736277.2741632.
- Joiner,T.E.(1994).Contagious depression:Existence,specificity to depressed symptoms,and the role of reassurance seeking.Journal of Personality and Social Psychology,67(2),287-296.doi:10.1037/0022-3514.67.2.287.
- Kramer,A.D.I.(2012).The spread of emotion via Facebook.In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp.767-770).Austin:ACM.doi:10.1145/2207676.2207787.
- Liu,L.,Zhang,G.N.,Zhou,R.L.& Wang,Z.W.(2014).Motivational intensity modulates attentional scope:Evidence from behavioral and ERP studies.Experimental Brain Research,232(10),3291-3300.doi:10.1007/s00221-014-4014-x.
- Ma,Y.G.& Li,S.X.(2016).The effect of negative affects varying in motivational intensity on attentional flexibility.Cogent Psychology,3(1),1209800.doi:10.1080/23311908.2016.1209800.
- Mikolov,T.,Sutskever,I.,Chen,K.,Corrado,G.& Dean J.(January 16,2013a).Efficient estimation of word representations in vector space.Retrieved from https://arxiv.org/abs/1301.3781.
- Mikolov,T.,Sutskever,I.,Chen,K.,Corrado,G.& Dean J.(2013b).Distributed representations of words and phrases and their compositionality.In Proceedings of the 26th International Conference on Neural Information Processing Systems (pp.3111-3119).Lake Tahoe:Curran Associates Inc.
- Monserud,R.A.& Leemans,R.(1992).Comparing global vegetation maps with the Kappa statistic.Ecological Modelling,62(4),275-293.doi:10.1016/0304-3800(92)90003-w.
- Plutchik,R.& Kellerman,H.(1980).Emotion:Theory,research and experience,volume 1:theories of emotion (pp.15-21).London:Academic Press.
- Price,T.F.& Harmon-Jones,E.(2010).The effect of embodied emotive states on cognitive categorization.Emotion,10(6),934-938.doi:10.1037/a0019809.
- Rehurek,R.& Sojka,P.(August,2011).Gensim—statistical semantics in python.4th European Conference on Python in Science.Paris.
- Shen,D.H.,Wang,G.Y.,Wang,W.L.,Min,M.R.,Su,Q.L.,Zhang,Y.Z.,Li,C.Y.,Henao,R.& Carin,L.(2018).Baseline needs more love:On simple word-embedding-based models and associated pooling mechanisms.In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (pp.440-450).Melbourne,Australia:Association for Computational Linguistics.doi:10.18653/v1/p18-1041.
- Sunstein,C.R.(2003).The law of group polarization.In Fishkin,J.S.& Laslett,P.(Eds.),Debating Deliberative Democracy (pp.80-101).Malden:Blackwell Publishing Ltd.doi:10.1002/9780470690734.ch4.
- Thelwall,M.,Wilkinson,D.& Uppal,S.(2010).Data mining emotion in social network communication:Gender differences in MySpace.Journal of the American Society for Information Science and Technology,61(1),190-199.doi:10.1002/asi.21180.
- Wolleb?k,D.,Karlsen,R.,Steen-Johnsen,K.& Enjolras,B.(2019).Anger,fear,and echo chambers:The emotional basis for online behavior.Social Media + Society,5(2):1-14.doi:10.1177/2056305119829859.
- Wu,S.M.,Tan,C.H.,Kleinberg,J.& Macy,M.(2011).Does bad news go away faster?.In Proceedings of the 5th International AAAI Conference on Web and Social Media (pp.646-649).Barcelona:AAAI.
- Wu,S.C.,Gong,L.,Rand,W.& Raschid,L.(2012).Making recommendations in a microblog to improve the impact of a focal user.In Proceedings of the Sixth ACM Conference on Recommender Systems (pp.265-268).Dublin,Ireland:ACM.doi:10.1145/2365952.2366010.
- Xu,H.,Chen,Z.,Li,R.& Wang,C.J.(July 20,2020).The geometry of information cocoon:Analyzing the cultural space with word embedding models.Retrieved from https://arxiv.org/abs/2007.10083.
- Yang,J.,Yan,X.,Chen,S.,Liu,W.,Zhang,X.& Yuan,J.(2021).Increased motivational intensity leads to preference for distraction over reappraisal during emotion regulation:Mediated by attentional breadth.Emotion.doi:10.1037/emo0000977.
- Zhao,J.C.,Dong,L.,Wu,J.J.& Xu,K.(2012).MoodLens:An emoticon-based sentiment analysis system for Chinese tweets.In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp.1528-1531).Beijing:ACM.doi:10.1145/2339530.2339772.
- Zhao,Y.W.,Wang,C.,Han,H.,Shu,M.& Wang,W.L.(2020).An impact evaluation framework of personalized news aggregation and recommendation systems.In 2020 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT) (pp.893-900).Melbourne,Australia:IEEE.doi:10.1109/wiiat50758.2020.00136.
- Zheng,X.W.& Gupta,A.(2019).Social network of extreme tweeters:A case study.In Proceedings of the 2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (pp.302-306).Vancouver,Canada:ACM.doi:10.1145/3341161.3342909.